

STTB406

HIGH VOLTAGE ULTRA-FAST DIODE

PRELIMINARY DATASHEET

MAJOR PRODUCTS CHARACTERISTICS

I Fpeak	4 A
V _{RRM}	600 V
t _{rr}	55 ns
V _F (max)	1.2 V

FEATURES AND BENEFITS

- TURBOSWITCH TM OUTSTANDING BENEFITS.
- HIGH REVERSE VOLTAGE: 600 V
- LOW POWER LOSSES INDUCING LOW TEMPERATURE AND HIGH RELIABILITY.

DO-201AD (plastic) STTB406

DESCRIPTION

High voltage ultra-fast diode suitable as a booster diode in PCF circuity in discontinuous mode in electronic ballast for lighting, TV and small equipment SMPS.

The device is packaged in a DO-201AD axial plastic enveloppe.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	VALUE	Unit	
V_{RRM}	Repetitive Peak Reverse Voltage		600	V
V_{RWM}	Reverse Working Voltage		600	V
I _F peak	Forward Average Current (1)	4	А	
	Ambient temperature (2)	65	°C	
IFRM	Repetitive peak forward current	tp = 5μs f = 1kHz	100	А
I _{FSM}	Surge Non Repetitive Forward Current tp = 10 ms sine		150	А
T _{stg}	Storage Temperature Range	- 40 to 150	°C	
Tj	Max Operating Junction Temperature	135	°C	

⁽¹⁾ duty cycle = 0.5 and square waveform

November 1995 1/3

⁽²⁾ on infinite heatsink

STTB406

THERMAL DATA

Symbol	Parameter	Max.	Unit
R _{th(j-l)}	Junction to lead on infinite heatsink	21	°C/W
R _{th(j-a)}	Junction to ambient on printed circuit L lead = 10mm	75	°C/W

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions		Тур.	Max.	Unit
I _R *	Reverse Leakage Current	$V_R = 0.8 V_{RWM}$	Tj = 25°C Tj = 125°C		50 0.75	μA mA
V _F **	Forward Voltage Drop	I _F = 4 A	Tj = 25°C Tj = 125°C		1.3 1.2	V V

Pulse test:

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING

Symbol	Parameter	Test Conditions	Тур.	Max.	Unit
t _{rr}	Reverse Recovery Time	$I_F = 0.5A$ $I_R = 1A$ $Irr = 0.25A$	55	75	ns
		I _F = + 100 mA / - 100 mA	130		ns

DYNAMIC ELECTRICAL CHARACTERISTICS TURN-ON SWITCHING

Symbol	Parameter	Test Conditions	Тур.	Max.	Unit
t _{fr}	Forward Recovery Time	$I_F = 4 \text{ A}$ $dI_F/dt = 100 \text{ A/}\mu\text{s}$		0.5	μs
V _{FP}	Peak Forward Voltage	Measured at V _F max. Tj = 25°C		15	V

To evaluate the conduction losses, in cse of square waveform, use the following equation :

$$P = 1.0 \text{ x } I_{F(av)} + 0.050 \text{ x } I_{F(RMS)} ^2$$

Ex : for $\,$ I_p = 4 A and δ = 0.5, $\,$ I_{F(av)} = 2 A and P = 2.5 Watts.

 $^{^*}$ tp = 5 ms, duty cycle < 2% ** tp = 380 μ s, duty cycle < 2%

PACKAGE MECHANICAL DATA DO-201AD

	DIMENSIONS REF. Millimeters Inches						
REF.			Millimeters Inches		NOTES		
	Min.	Max.	Min.	Max.			
Α		9.50		0.374			
В	25.40		1.000		1 - The lead diameter ∅ D is not controlled over zone E		
ØC		5.30		0.209	2. The minimum exial length within which the device may be		
Ø D		1.30		0.051	2 - The minimum axial lengh within which the device may be placed with its leads bent at right angles is 0.59"(15 mm)		
Е		1.25		0.049			

Weight: 1 g

Marking: Type number White band indicates cathode

cooling method: by convertion (method A)

Date code

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 $\ \, \odot$ 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

